Composite phenomenology as a target for lattice QCD

Tom DeGrand, Ethan Neil

University of Colorado at Boulder

East Lansing, July 2018

Outline

- Motivation
- Examples of systems
 - "Twin Higgs"
 - Strongly interacting dark matter
- Example of model: the KSRF relation (and related quantities)
- Takeaway thoughts

Supported by U. S. Department of Energy

Motivation

- Lattice QCD has a very specific goal: QCD at physical quark masses
- Simulation data away from the chiral limit is uninteresting in its own right

However

- Some beyond standard model phenomenology incorporates confining dynamics
 - Composite Higgs
 - Strongly interacting dark matter
- Sometimes, the models do not involve zero mass or small mass fermions
- ullet Sometimes, the gauge group is even SU(3)

Uninteresting lattice QCD results can actually be interesting!

T. DeGrand 1/15

Targets

- Spectroscopy presented as scale-independently as possible
 - Pheno people work with Λ_{QCD} and Yukawas instead of quark masses
 - Perhaps show m_H in MeV vs $(m_{PS}/m_V)^2$ (to easily rescale)?
- ullet f_{PS} and other LEC's (used for extracting Higgs parameters)
- ullet f_V and f_A
 - Used for Z-boson couplings to the dark sector
 - Used for vector dominance, "kinetic mixing" of photon and dark photon
- g_{VPP} (the $V \to PP$ coupling)
- 5-Goldstone couplings (pheno people use the Wess Zumino Witten vertex)
- Matrix elements of scalar currents, for Higgs couplings nucleon sigma terms (and related objects)

Useful to quote FLAG: "To date, no significant differences between results with different values of N_f have been reported in the quantities listed in Tables"

T. DeGrand 2/15

QCD at large m_{PS}/m_V

All the spectroscopy is out there!

 $(m_{PS}/m_V)^2$ versus pion mass in MeV.

T. DeGrand 3/15

Meson spectroscopy (vector and axial vector mesons, η , η') vs $(m_{PS}/m_V)^2$.

T. DeGrand 4/15

Somewhat messy baryon spectroscopy vs $(m_{PS}/m_V)^2$ (bursts N, Δ , Ω)

T. DeGrand 5/15

 m_{PS}/f_{PS} vs $(m_{PS}/m_V)^2$. $(f_\pi=137$ MeV.) Note the limited range. . .

T. De Grand

An example - "twin Higgs models"

Goes back to Chacko, Goh, Harnik, hep-ph/0506256 – a "solve the hierarchy problem" model

Make H an SU(4) fundamental scalar, with a potential

$$V(H) = -m^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 \tag{1}$$

H gets a VEV, $f=m/\sqrt{2\lambda}$

Break SU(4) explicitly by gauging an $SU(2)_A \times SU(2)_B$ subgroup. $(SU(2)_A \to SU(2)_L)$

Gauge loops contribute a quadratically divergent mass to H components,

$$\Delta V = \frac{9g_A^2 \Lambda^2}{64\pi^2} H_A^{\dagger} H_A + \frac{9g_B^2 \Lambda^2}{64\pi^2} H_B^{\dagger} H_B \tag{2}$$

Impose a symmetry $(H_A \leftrightarrow H_B \text{ forcing } g_A = g_B)$

$$\Delta V = \frac{9g^2\Lambda^2}{64\pi^2} (H_A^{\dagger} H_A + H_B^{\dagger} H_B) = \frac{9g^2\Lambda^2}{64\pi^2} H^{\dagger} H \tag{3}$$

to remove quadratically divergent mass for Goldstones from gauge fields

Loops generate a non SU(4) invariant GB mass $\sim g^2 f/4\pi$

Generalize this stabilization to all of the SM with a "twin" of every SM particle

Gymnastics to prevent disasters...Yukawas can be different in twin sector

But (unlike for most BS models), $N_c = 3$ is mandatory

Several variants in the literature

- A copy of every fermion (issue: light particles at BBN)
- Or just a copy of the t and b (and both are heavy)
 - Quenched glueballs
 - Quarkonia

Phenomenology presented in terms of

- $\Lambda \neq \Lambda_{QCD}$ setting the overall scale
- Yukawas set the quark masses

T. DeGrand 8/15

An example – strongly interacting dark matter

"Strongly - interacting" means $3 \rightarrow 2$ couplings are important

Example: A. Berlin et al, 1801.05805 (with predecessors back to 2015)

- Dark matter as PGB's
- Explicit model is SU(3) with $N_f=3$ fundamentals
 - Other possibilities out there (SU(2) w/ fundamentals)
- ullet Often, predictions in terms of m_{PS}/f_{PS} , spanning an unphysically large range
- 1801.05805 wants $m_{PS}/m_V \sim 1/2$
- ullet Long story about 3 o 2 in terms of f_V , g_{VPP}
- Dark photon (AKA rho meson)
- Unusual fermion charge assignments (Q = diag(+1, -1, -1))

Goals of papers are to compute $3 \rightarrow 2$ rate, coupling of dark photon to EM photon

T. DeGrand 9/15

A case study – the KSRF relation

Phenomenologists combine chiral dynamics and vector mesons in an effective Lagrangian

$$\mathcal{L} = \frac{F^2}{4} \text{Tr}(D_{\mu} U D^{\mu} U^{\dagger}) - \frac{1}{8} \text{Tr} G_{\mu\nu} G^{\mu\nu} + \dots$$
 (4)

with the usual Goldstone field

$$U = \exp(i\Phi/F) \tag{5}$$

and vector mesons introduced with a covariant derivative

$$D_{\mu}\Phi = \partial_{\mu}\Phi + \frac{ig}{2}[\Phi, V_{\mu}] \tag{6}$$

They have a self coupling from

$$G_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} \tag{7}$$

 \ldots in $\mathcal L$ includes phenomenological V mass terms, couplings

(KSRF is Kawarabayashi, Suzuki, Riadzuddin, Fayazuddin, 1966)

Bottom line is phenomeological expression for

$$\langle 0|\bar{u}\gamma_i d|V\rangle = m_V^2 f_V \epsilon_i \tag{8}$$

$$f_V = \sqrt{2} \frac{f_{PS}}{M_V}. (9)$$

(and other observables)

Also

$$g_{VPP} = \frac{M_V}{f_{PS}}. (10)$$

in terms of which the vector meson decay width is

$$\Gamma(V \to PP) \simeq \frac{g_{VPP}^2}{48\pi m_V^2} (m_V^2 - 4m_{PS}^2)^{3/2}.$$
 (11)

See Klingl, Kaiser, Weise, hep-ph/0607431

The phenomenologists we know don't know about lattice f_V or g_{VPP} !

 f_V and f_A versus $(m_{PS}/m_V)^2$.

T. DeGrand 12/15

 f_V versus $(m_{PS}/m_V)^2$. Squares: direct lattice calculations of f_V ; blue symbols f_V from KSRF f_{PS} and m_V . The fancy cross is the KSFR result for massless quarks from the physical rho mass and pion decay constant.

T. DeGrand 13/15

The vector meson decay constant g_{VPP} from lattice calculations, as a function of $(m_{PS}/m_V)^2$. The line is the KSFR relation with physical values for the rho mass and f_{π} .

T. DeGrand 14/15

Takeaway thoughts

- ullet There is a market for SU(3) lattice results away from the chiral limit
- It would be useful to present lattice results in non-lattice-specific formats
- Comparing lattice data to model calculations can be profitable

T. DeGrand 15/15